Solid-phase extraction at high pH as a promising tool for targeted isolation of biologically active fractions of humic acids
Mikhnevich Tatiana A., Grigorenko Vitaly G., Rubtsova Maya Yu, Rukhovich Gleb D., Yiming Sun, Khreptugova Anna N., Zaitsev Kirill V., Perminova Irina V.
ACS Omega, 2023, , doi: 10.1021/acsomega.3c08555
Abstract
A search for novel sources of biologically active compounds is at the top of the agenda for biomedical technologies. Natural humic substances (HSs) contain a large variety of different chemotypes, such as condensed tannins, hydrolyzable tannins, terpenoids, lignins, etc. The goal of this work was to develop an efficient separation technique based on solid-phase extraction (SPE) for the isolation of narrow fractions of HS with higher biological activity compared to the initial material. We used lignite humic acid as the parent humic material, which showed moderate inhibition activity toward beta-lactamase TEM 1 and antioxidant activity. We applied two different SPE techniques:\ the first one was based on a gradient elution with water/methanol mixtures of the humic material sorbed at pH 2, and the second one implied separation by a difference in the pKa value by the use of sequential sorption of HS at pH from 8 to 3. SPE cartridges Bond Elute PPL (Agilent) were used in the fractionation experiments. The first and second techniques yielded 9 and 7 fractions, respectively. All fractions were characterized using high-resolution mass spectrometry and biological assays, including the determination of beta-lactamase (TEM 1) inhibition activity and antioxidant activity. The acidity-based separation technique demonstrated substantial advantages:\ it enabled the isolation of components, outcompeting the initial material at the first step of separation (sorption at pH 8). It showed moderate orthogonality in separation with regard to the polarity-based technique. Good perspectives are shown for developing a 2D separation scheme using a combination of polarity and acidity-based approaches to reduce structural heterogeneity of the narrow fractions of HS.